Revised M06-L functional for improved accuracy on chemical reaction barrier heights, noncovalent interactions, and solid-state physics.

نویسندگان

  • Ying Wang
  • Xinsheng Jin
  • Haoyu S Yu
  • Donald G Truhlar
  • Xiao He
چکیده

We present the revM06-L functional, which we designed by optimizing against a larger database than had been used for Minnesota 2006 local functional (M06-L) and by using smoothness restraints. The optimization strategy reduced the number of parameters from 34 to 31 because we removed some large terms that increased the required size of the quadrature grid and the number of self-consistent-field iterations. The mean unsigned error (MUE) of revM06-L on 422 chemical energies is 3.07 kcal/mol, which is improved from 3.57 kcal/mol calculated by M06-L. The MUE of revM06-L for the chemical reaction barrier height database (BH76) is 1.98 kcal/mol, which is improved by more than a factor of 2 with respect to the M06-L functional. The revM06-L functional gives the best result among local functionals tested for the noncovalent interaction database (NC51), with an MUE of only 0.36 kcal/mol, and the MUE of revM06-L for the solid-state lattice constant database (LC17) is half that for M06-L. The revM06-L functional also yields smoother potential curves, and it predicts more-accurate results than M06-L for seven out of eight diversified test sets not used for parameterization. We conclude that the revM06-L functional is well suited for a broad range of applications in chemistry and condensed-matter physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An improved and broadly accurate local approximation to the exchange-correlation density functional: the MN12-L functional for electronic structure calculations in chemistry and physics.

We report a new local exchange-correlation energy functional that has significantly improved across-the-board performance, including main-group and transition metal chemistry and solid-state physics, especially atomization energies, ionization potentials, barrier heights, noncovalent interactions, isomerization energies of large moleucles, and solid-state lattice constants and cohesive energies.

متن کامل

How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?

The 14 Minnesota density functionals published between the years 2005 and early 2016 are benchmarked on a comprehensive database of 4986 data points (84 data sets) involving molecules composed of main-group elements. The database includes noncovalent interactions, isomerization energies, thermochemistry, and barrier heights, as well as equilibrium bond lengths and equilibrium binding energies o...

متن کامل

Density functional approximations for charge transfer excitations with intermediate spatial overlap.

Density functional theory is now the method of choice for calculating the electronic structure of complex systems, and time-dependent density functional theory (TDDFT) is now the preferred method for calculating spectroscopic properties of large molecules. The validity of the theory depends mainly on the quality of the approximation to the unknown exchange-correlation energy. In the present pap...

متن کامل

Density functional approximations for charge transfer excitations with intermediate spatial overlapw

Density functional theory is now the method of choice for calculating the electronic structure of complex systems, and time-dependent density functional theory (TDDFT) is now the preferred method for calculating spectroscopic properties of large molecules. The validity of the theory depends mainly on the quality of the approximation to the unknown exchange–correlation energy. In the present pap...

متن کامل

A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions.

We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 32  شماره 

صفحات  -

تاریخ انتشار 2017